4,028 research outputs found

    CONDOR: A Hybrid IDS to Offer Improved Intrusion Detection

    Get PDF
    Intrusion Detection Systems are an accepted and very useful option to monitor, and detect malicious activities. However, Intrusion Detection Systems have inherent limitations which lead to false positives and false negatives; we propose that combining signature and anomaly based IDSs should be examined. This paper contrasts signature and anomaly-based IDSs, and critiques some proposals about hybrid IDSs with signature and heuristic capabilities, before considering some of their contributions in order to include them as main features of a new hybrid IDS named CONDOR (COmbined Network intrusion Detection ORientate), which is designed to offer superior pattern analysis and anomaly detection by reducing false positive rates and administrator intervention

    A homoleptic phosphine adduct of Tl(I)

    Get PDF
    A homoleptic phosphine adduct of thallium(I) supported by a tris(phosphino)borate ligand has been isolated and structurally characterized

    Detoxification in rehabilitation in England: effective continuity of care or unhappy bedfellows?

    Get PDF
    There is evidence that residential detoxification alone does not provide satisfactory treatment outcomes and that outcomes are significantly enhanced when clients completing residential detoxification attend rehabilitation services (Gossop, Marsden, Stewart, & Rolfe, 1999; Ghodse, Reynolds, Baldacchino, et al., 2002). One way of increasing the likelihood of this continuity of treatment is by providing detoxification and rehabilitation within the same treatment facility to prevent drop-out, while the client awaits a rehabilitation bed or in the transition process. However, there is little research evidence available on the facilities that offer both medical detoxification and residential rehabilitation. The current study compares self-reported treatment provision in 87 residential rehabilitation services in England, 34 of whom (39.1%) reported that they offered detoxification services within their treatment programmes. Although there were no differences in self-reported treatment philosophies, residential rehabilitation services that offered detoxification were typically of shorter duration overall, had significantly more beds and reported offering more group work than residential rehabilitation services that did not offer detoxification. Outcomes were also different, with twice as many clients discharged on disciplinary grounds from residential rehabilitation services without detoxification facilities. The paper questions the UK classification of residential drug treatment services as either detoxification or rehabilitation and suggests the need for greater research focus on the aims, processes and outcomes of this group of treatment providers

    Towards an emotional energy geography: Attending to emotions and affects in a former coal mining community in South Wales, UK

    Get PDF
    In this paper, we make a case for bringing energy geography into closer dialogue with emotional geography, and argue that doing so has the potential to greatly improve our understanding of energy systems and their intersection with everyday life, bringing essential but often overlooked aspects into view. We draw on research carried out as part of an arts and humanities-based project in South Wales (UK), a region once dominated by coal extraction. We present and discuss material from sixteen oral histories recorded with long-standing members of the village of Ynysybwl. Reading their accounts through the lens of emotional-affective constructs reveals not only participants’ emotions about aspects of energy production and consumption, but also the atmospheres and affects arising within and out of the energy system. This brings to light the affectual agency of the energy system as an infrastructure assemblage and its role in everyday production of space. Related to this, it surfaces essential aspects of experiences of energy system change. We argue that recognising and exploring affect and emotion is crucial for energy geography as it continues to explore the functionings of energy systems, and energy transitions

    Inhibitors of diacylglycerol metabolism suppress CCR2 receptor signalling in human monocytes

    Get PDF
    Background and purpose CCL2 is an inflammatory chemokine that stimulates the recruitment of monocytes into tissue via activation of the GPCR CCR2. Experimental approach Freshly isolated human monocytes and THP‐1 cells are used; Fura‐2 loaded cells used to measure intracellular Ca2+ responses; transwell migration; siRNA‐mediated gene knockdown. Key results We observed that CCL2 evokes intracellular Ca2+ signals and stimulates migration in THP‐1 monocytic cells and human CD14+ monocytes in a CCR2‐dependent fashion. Attenuation of diacylglycerol (DAG) catabolism in monocytes by inhibiting DAG kinase (R59949) or DAG lipase (RHC80267) activity suppresses CCL2‐evoked Ca2+ signalling and transwell migration in monocytes. These effects were not due to a reduction in the number of cell surface CCR2 receptors. The effect of DAG kinase or DAG lipase inhibition could be mimicked by the addition of the DAG analogue 1‐oleoyl‐2‐acetyl‐glycerol (OAG) but was not rescued by application of exogenous phosphatidylinositol 4,5‐bisphosphate. Suppressive effects of R59949, RHC80267 and OAG could be partially or fully reversed by the Gö6983 (pan PKC isoenzyme inhibitor) but not by Gö6976 (PKCα and PKCβ inhibitor). RNAi‐mediated knock‐down of DAG kinase α isoenzyme modulated CCL2‐evoked Ca2+ responses in THP‐1 cells. Conclusions & Implications Taken together, these data suggest that DAG production resulting from CCR2 activation is metabolised by both DAG kinase and DAG lipase pathways in monocytes, and that pharmacological inhibition of DAG catabolism or application suppresses signalling on the CCL2‐CCR2 axis via a mechanism dependent upon a PKC isoenzymes(s) that are sensitive to Gö6983 but not Gö6976

    Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44

    Get PDF
    Adhesive interactions involving CD44, the cell surface receptor for hyaluronan, underlie fundamental processes such as inflammatory leukocyte homing and tumor metastasis. Regulation of such events is critical and appears to be effected by changes in CD44 N-glycosylation that switch the receptor "on" or "off" under appropriate circumstances. How altered glycosylation influences binding of hyaluronan to the lectin-like Link module in CD44 is unclear, although evidence suggests additional flanking sequences peculiar to CD44 may be involved. Here we show using X-ray crystallography and NMR spectroscopy that these sequences form a lobular extension to the Link module, creating an enlarged HA binding domain and a formerly unidentified protein fold. Moreover, the disposition of key N-glycosylation sites reveals how specific sugar chains could alter both the affinity and avidity of CD44 HA binding. Our results provide the necessary structural framework for understanding the diverse functions of CD44 and developing novel therapeutic strategies

    Combining uretdione and disulfide reversibly degradable polyurethanes : route to alternating block copolymers

    Get PDF
    Uretdione (temperature and catalyst controlled) and disulphide (REDOX controlled) functionalised polyurethanes have been described and the reversibility of these bonds tested. The polymers have been synthesised with reversible covalent groups present throughout their backbone, developing routes to reversibly degradable polyurethanes. These materials degrade and reheal in response to different external stimuli, which supplies a proof of concept for controlling the molecular weight, and therefore, the physical properties of a polyurethane. Further, a unique route to an alternating block copolymer is also discussed that utilises a mixture of disulphide and uretdione functionalised polymers as the reagents to form a thiourethane. The dramatically reduced safety hazards of dealing with the functionalised polymers, in comparison to the free isocyanate and thiols, could be of great interest to industrial application for current drives towards safer routes to polyurethanes

    Broad-Spectrum Antibacterial Characteristics of Four Novel Borate-Based Bioactive Glasses

    Get PDF
    Bioactive glasses have been developed for medical applications in the body for bone and tissue repair and regeneration. We have developed a borate-containing bioactive glass (13-93B3, referred to as B3), which is undergoing clinical trials to assess its wound-healing properties. To complement the healing properties of B3, metal ion dopants have been added to enhance its antimicrobial properties. Bioactive glasses doped with silver, gallium or iodine ions were found to have broad spectrum antimicrobial effects on clinically relevant bacteria including MRSA. While the B3 glass alone was sufficient to produce antibacterial effects on select bacteria, adding dopants enhanced the broad-spectrum antibacterial properties: Live-Dead staining fluorescence microscopy suggests cell membrane integrity is disrupted in gram positive bacteria exposed to the glass compounds, but not gram negative bacteria, indicating multiple mechanisms of action for each glass formulation

    Co-crystallisation of cytosine with 1,10-phenanthroline: computational screening and experimental realisation

    Get PDF
    Attempts to co-crystallise the nucleobases adenine, thymine, guanine, and cytosine with 1,10-phenanthroline by ball milling and solvent evaporation methods are described. A 1:1 co-crystal of cytosine and 1,10-phenanthroline can be obtained by grinding or by solvent evaporation. The structure contains two crystallographically independent cytosine and two independent 1,10-phenanthroline molecules (Z′ = 2). The cytosine molecules form two similar but crystallographically independent hydrogen-bonded chains, while the 1,10-phenanthroline molecules are arranged in π-stacks. Between the chains of cytosine and the π-stacks exist N-H⋯N and C-H⋯N interactions. Crystal structure prediction (CSP) calculations were applied to all four systems to assess their potential for co-crystallisation as well as the likely structures and intermolecular interactions that could result from co-crystallisation. Calculations on the cytosine system demonstrate that co-crystallisation results in a lower energy than the crystalline forms of the two starting materials, in line with the co-crystal formation observed. For the systems which did not form a co-crystal, CSP was used to explore potential packing arrangements, but found none which were lower in energy than that of the pure crystalline forms. In these cases there is significant disruption to the nucleobase hydrogen bonding between the pure compound and the hypothetical co-crystal. For pure adenine and guanine, the hydrogen-bonded ribbons form sheets which must be broken, whereas for thymine, the lack of hydrogen bond donors does not allow the hydrogen bonding present for pure thymine to be maintained while forming thymine-1,10-phenanthroline hydrogen bonds
    corecore